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1. Introduction

Supersymmetric black hole solutions of five-dimensional gauged supergravity have been

known for a few years [1 – 5]. According to the AdS/CFT correspondence [6], these black

holes should correspond to 1/16 BPS states of N = 4 SU(N) super Yang-Mills theory

on R × S3 or, equivalently, gauge-invariant local operators of this theory on R4. A puzzle

arises [7] because BPS operators carry five independent conserved charges: their spins J1, J2

and R-charges Q1, Q2, Q3 (where (Q1, Q2, Q3) is a weight vector of the SU(4) R-symmetry

group), whereas the most general known asymptotically AdS5 × S5 supersymmetric black

hole solution has only 4 independent conserved charges [5].

There are two ways that this puzzle could be resolved. (i) We already know the most

general supersymmetric black hole solution. Although generic 1/16-BPS operators have

5 independent charges, only a subset of these operators gives a large enough entropy to

correspond to a macroscopic event horizon and this subset has only 4 independent charges.

(Maybe because of finite coupling effects in the CFT.) This possibility has been explored

in [8]. (ii) There exists a 5-parameter supersymmetric black hole solution that remains to

be discovered.

If (ii) is correct, there appears to be some tension with what is known about black holes

in minimal gauged supergravity. One can truncate to this theory by setting Q1 = Q2 =
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Q3 = Q. This theory admits a 4-parameter non-supersymmetric black hole solution [3].

The 4 parameters are the 4 conserved charges of this theory, namely J1, J2, Q and the

mass M . One might expect this to be the most general black hole of spherical topology.

In the supersymmetric limit, one loses two parameters: supersymmetric black holes are

parameterized by J1 and J2. Returning to general (unequal) Qi, we would expect the most

general nonsupersymmetric black hole to be parameterized by the 6 conserved charges

J1, J2, Q1, Q2, Q3,M and losing 2 parameters in the supersymmetric limit would take one

to the 4-parameter solution of [5]. There does not seem to be any room for an additional

parameter.

This objection rests on the assumption that black holes should be characterized by

their conserved charges. Even in four dimensions, there is no uniqueness theorem for

asymptotically AdS black holes, so maybe this assumption is incorrect even for topologically

spherical AdS black holes. Furthermore, we know that this assumption is violated by black

rings [9] in five asymptotically flat dimensions, which can require nonconserved charges to

specify them fully [10]. It is natural to guess that the same is true in AdS. So perhaps the

black holes of (ii) are supersymmetric AdS black rings.1

The goal of this paper is to classify supersymmetric black holes in five-dimensional

gauged supergravity. Unfortunately, finding rotating black hole solutions is hard, even

with supersymmetry. We shall therefore adopt the approach initiated in [11] of classifying

near-horizon geometries of supersymmetric black holes.2 Obviously the existence of a near-

horizon geometry with certain properties cannot be taken as a proof of the existence of a

full black hole solution with those properties but this approach can be used to rule out

certain types of solution. For example, if we find that near-horizon geometries with horizon

topology S1 × S2 are not possible then that would exclude supersymmetric black rings.

In minimal five-dimensional gauged supergravity, a classification of near-horizon ge-

ometries was attempted in [1]. However, the resulting equations proved too difficult to solve

in full generality without additional assumptions. (This is in contrast with the ungauged

theory, for which a full classification is possible [11].) The assumptions made in [1] were too

restrictive to encompass the solutions of [3]. In this paper, we return to the equations of [1]

and solve them by making a weaker assumption, satisfied by all known five-dimensional

black hole solutions, whether asymptotically AdS or asymptotically flat, including black

rings [9, 10, 15]. Our assumption is the existence of two rotational symmetries.3

Our result is that a supersymmetric asymptotically AdS black hole satisfying this

assumption must have a near-horizon geometry locally isometric to that of the known

supersymmetric black hole solution of [3]. Hence either supersymmetric AdS black rings

do not exist, or they are rather unusual in that they do not admit two rotational symmetries,

1Other possibilities are that the black holes of (ii) do not admit a five-dimensional interpretation or that

they involve non-abelian gauge fields.
2See [12 – 14] for other recent work on the near-horizon geometry of supersymmetric AdS black holes.
3Note that the ”stationary implies axisymmetric” theorem [16] for black holes only guarantees the

existence of a single rotational symmetry. Furthermore it does not apply to supersymmetric black holes.

However, one might expect the conclusion to be valid for such solutions since one can obtain them as limits

of non-supersymmetric black holes.
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which would mean that they have less symmetry than any known five-dimensional black

hole solution.

Could there exist new supersymmetric black holes of spherical topology, e.g. a 3-

parameter generalization of the solution of [3]? We noted above that this seems unlikely

but we cannot exclude the possibility that there exists such a solution with the same near-

horizon geometry as the 2-parameter solution of [3], i.e., that a parameter is lost in the

near-horizon limit (although we are not aware of any example in which this happens).

Our analysis is local: we do not enforce spatial compactness of the horizon until the

end. This enables us to demonstrate why supersymmetric AdS black rings with the same

symmetries as asymptotically flat ones do not exist. We do indeed obtain a solution that

corresponds to the near-horizon geometry of a black hole with S1 × S2 topology. It is a

warped product of AdS3 and S2. However, the S2 always has a conical singularity. This

suggests that AdS black rings may exist, but they cannot be ”balanced” in the supersym-

metric limit without the presence of external forces corresponding to the conical singularity.

The conical singularity vanishes when one takes the limit of vanishing cosmological con-

stant, and one recovers the AdS3 × S2 geometry of an asymptotically flat supersymmetric

black ring [15].

Interestingly, when lifted to a solution of type IIB supergravity, our singular black

ring near-horizon geometry is locally isometric to a solution obtained in [17]. It was shown

in [17] that this solution can be extended to a globally regular metric in ten dimensions,

but it does not appear possible to reduce the resulting solution to five dimension so any

interpretation in terms of five dimensional black holes is lost.

This paper is organized as follows. We start by deriving a general constraint on black

holes with two rotational symmetries. Then we review the results of [1], presenting the

equations relevant to our analysis and deriving some general results. We solve these equa-

tions subject to the assumption of two rotational symmetries. There are only two in-

teresting solutions and we show that these correspond to the near-horizon geometry of a

supersymmetric black ring with a conical singularity and the near-horizon geometry of the

solution of [3] respectively. Section 3 concludes. Some details of the analysis are relegated

to appendices.

2. Supersymmetric near-horizon geometries

2.1 General constraints

The bosonic sector of minimal D = 5 gauged supergravity is Einstein-Maxwell theory with

a negative cosmological constant and a Chern-Simons term for the Maxwell field F . The

unique maximally supersymmetric solution of this theory is AdS5 with vanishing gauge

field [18]. We shall denote by ` the radius of this AdS5 solution.

Consider an asymptotically AdS5 solution of this theory (not necessarily supersymmet-

ric) that is stationary and admits two rotational symmetries, i.e., there is a R×U(1)×U(1)

isometry group. Let k,m1,m2 denote the Killing fields that generate time translations and

rotations respectively. We assume that these Killing fields commute and also leave the

– 3 –



J
H
E
P
0
2
(
2
0
0
7
)
0
2
6

Maxwell field invariant. Now we can use a standard argument from the theory of station-

ary axisymmetric solutions [19]: the Bianchi identity and the fact that the Lie derivatives

of F along the Killing fields vanish imply that mµ
1mν

2Fµν is constant. However, since the

solution is asymptotically AdS5, we can find coordinates so that the asymptotic metric is

ds2 ∼ −
(

1 +
r2

`2

)

dt2 +

(

1 +
r2

`2

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
1 + cos2 θdφ2

2

)

, (2.1)

where k = ∂/∂t, mi = ∂/∂φi and 0 ≤ θ ≤ π/2. Therefore, in the asymptotic region, m1

and m2 vanish at θ = 0, π/2 respectively. It follows that

mµ
1mν

2Fµν ≡ 0. (2.2)

The same argument shows that kµmν
i Fµν ≡ 0 although we shall not need this result.

2.2 Near-horizon limit

Given a supersymmetric black hole we can take a near-horizon limit as explained in [11]

to obtain a supersymmetric near-horizon solution. We want to classify such solutions.

Necessary and sufficient conditions for a near-horizon geometry to be a supersymmetric

solution of this theory were worked out in [1] using the method introduced in [11]. One can

introduce Gaussian null coordinates on the horizon so that the near-horizon metric is [11]

ds2 = −r2∆(x)2dv2 + 2dvdr + 2rha(x)dvdxa + gab(x)dxadxb, (2.3)

where the horizon is at r = 0, ∂/∂v is Killing, ∆ is non-negative, and the metric gab is

the metric on a spatial cross-section of the horizon. We shall denote this 3-manifold as H.

Supersymmetry implies the following [1]:

• There exists a globally defined unit 1-form Z on H:

gabZaZb = 1, (2.4)

where gab is the inverse of gab.

• The (near-horizon) Maxwell field is

F =

√
3

2

(

−dv ∧ d(r∆) − ?h − 2

`
? Z

)

, (2.5)

where ? is the Hodge dual on H. Hence the Bianchi identity is

d ?

(

h +
2

`
Z

)

= 0. (2.6)

• The following equations hold on H

? dh − d∆ − ∆h =
6∆

`
Z, (2.7)

∇aZb = −∆

2
(?Z)ab + gab

(

h · Z +
3

`

)

− Zahb −
3

`
ZaZb, (2.8)

where h · Z ≡ gabhaZb. This implies that

dZ = −∆ ? Z + h ∧ Z. (2.9)
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• The Ricci tensor of H is

Rab =

(

∆2

2
+ h · h +

4

`
h · Z

)

gab − hahb −∇(ahb) −
6

`
h(aZb) −

6

`2
ZaZb. (2.10)

These equations are not the complete set derived in [1] but they are the only ones we will

need here. We have not been able to solve these equations in full generality. However, we

have obtained some general results that is it convenient to record here.

The near-horizon geometry is static if, and only if, the Killing field V ≡ ∂/∂v is

hypersurface orthogonal, i.e., V ∧ dV ≡ 0. The following lemma gives the conditions for

this to occur:

Lemma 1. The following conditions are equivalent: (a) the near-horizon geometry is static,

(b) dh ≡ 0, (c) ∆ ≡ 0.

Proof. Assume (a). Then the rab components of V ∧ dV ≡ 0 give dh ≡ 0 so (a) implies

(b).

Now assume (b). If ∆ is nonzero then equation (2.7) implies that Z = −(`/6)(h +

d∆/∆) and hence Z is closed. Equation (2.9) then implies that ∆Z ∧ ?Z = 0, hence

Z = 0, in contradiction with the fact that Z has unit norm. Hence we must have ∆ = 0

everywhere. Hence (b) implies (c).

Finally assume (c). Equation (2.7) shows that dh ≡ 0. But ∆ ≡ 0 and dh ≡ 0 implies

V ∧ dV ≡ 0. Hence (c) implies (a).

Our second lemma shows that ∆ cannot vanish anywhere if the near-horizon geometry

is non-static.

Lemma 2. If ∆ vanishes at a point then ∆ vanishes everywhere.

Proof. Take the divergence of (2.7) and use equations (2.6) and (2.8) to obtain

∇2∆ = −
(

h +
6

`
Z

)

· ∇∆ − 8

`

(

h · Z +
3

`

)

∆. (2.11)

Assume ∆ = 0 at p. Then, since ∆ ≥ 0, ∆ is at a (global) minimum so d∆ = 0 at p. It

then follows from this equation that ∇2∆ = 0 at p. However, since this is a minimum,

the eigenvalues of the Hessian of ∆ must be non-negative, and ∇2∆ is the sum of the

eigenvalues so they must all vanish. Hence the Hessian vanishes at p: ∂m∂n∆ = 0 at p.

Assume inductively that ∆ and its first 2n derivatives vanish at p. Then the Taylor

expansion at p begins

∆ =
1

(2n + 1)!
xi1 . . . xi2n+1∂i1 . . . ∂i2n+1

∆(p) + . . . , (2.12)

where xi are normal coordinates at p. Now ∆ has to be non-negative but this leading term

changes sign under x → −x and so we must require it to vanish. Therefore the (2n + 1)th

derivatives of ∆ must vanish at p. Now the expansion of ∆ is

∆ =
1

(2n + 2)!
xi1 . . . xi2n+2Mi1...i2n+2

+ . . . , (2.13)
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where the symmetric tensor M is the (2n + 2)th derivative of ∆. From our induction

hypothesis and equation (2.11), we can obtain

∂i1 . . . ∂i2n
∇2∆(p) = 0 (2.14)

which implies

Mi1...i2njj = 0. (2.15)

This implies that the leading term in the expansion of ∆ is harmonic in R3. But we also

need this term to be non-negative, which implies that it attains its minimum at the origin.

Then from the maximum principle, it follows that this term must vanish everywhere, i.e.,

M = 0. So we’ve shown that the first (2n + 2) derivatives of ∆ vanish. It follows by

induction, if ∆ = 0 at p then all derivatives of ∆ vanish at p hence ∆ ≡ 0 by analyticity.4

In summary, these lemmas reveal that a static near-horizon geometry has ∆ ≡ 0 and a

non-static one has ∆ > 0. We end this section by noting that a static near-horizon geometry

can arise from a non-static black hole. Indeed, this is what happens for supersymmetric

black rings in ungauged supergravity [15]. We shall see that the same appears to be true

in gauged supergravity.

2.3 Including the symmetries

Consider a supersymmetric, asymptotically anti-de Sitter black hole admitting two rota-

tional Killing fields m1 and m2. The near-horizon solution will inherit these symmetries.

Hence we are interested in classifying near-horizon solutions for which there exist two

commuting Killing vector fields m1, m2 on H that preserve h, ∆ and the Maxwell field

F . It follows from (2.5) that the Killing fields must also preserve Z. Furthermore, the

near-horizon solution will also inherit the condition (2.2).

We can choose local coordinates xa = (ρ, xi) so that ∂/∂xi are Killing, the metric on

H is

gabdxadxb = dρ2 + γij(ρ)dxidxj , (2.16)

and ∆ and the components of h are functions only of ρ. It is convenient to allow the Killing

fields ∂/∂xi to be arbitrary linear combinations of m1 and m2, i.e., ∂/∂xi need not have

closed orbits. We are then free to perform GL(2, R) transformations on the coordinates

xi to simplify our analysis. We shall enforce the fact that orbits of m1 and m2 must close

once we have determined a local solution.

It is convenient to parameterize the components of h as

hi = Γ−1γijk
j , hρ = −Γ′

Γ
, (2.17)

where Γ(ρ) is positive and a prime denotes a derivative with respect to ρ.

The spatial components of the Maxwell field strength can be decomposed as

Fabdxa ∧ dxb =

√
3

2
Bi(ρ)dρ ∧ dxi, (2.18)

4One might object to the assumption of analyticity. However, none of the results in this paper will rely

on this lemma.
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where we have used equation (2.2) to deduce that the ij components must vanish. Com-

paring with equation (2.5) gives

Z =
`

2
(?2B − h) , (2.19)

where ?2 denotes the Hodge dual with respect to the two-dimensional metric γij (with

volume form η2 oriented so that dρ ∧ η2 is the volume form of H).

The ρi component of equation (2.10) gives

0 = Rρi = −1

2
Γ−1γij

(

kj
)′

, (2.20)

hence we have

ki = constant. (2.21)

Substituting the expression (2.19) for Z into equation (2.7) gives

∆′ +
2∆Γ′

Γ
= 0, (2.22)

(

Γ−1k
)′

+ 2∆ ?2

(

Γ−1k
)

= −3∆B, (2.23)

where, for a 1-form ωi(ρ)dxi, we define ω′ = ω′
idxi. Equation (2.9) gives

∆Γ′

Γ
?2 1 − Γ−1k ∧ ?2B = 0, (2.24)

(

?2B − Γ−1k
)′

= ∆B + ∆ ?2

(

Γ−1k
)

− Γ′

Γ
?2 B. (2.25)

Solving equation (2.22) gives

∆ =
∆0

Γ2
, (2.26)

where ∆0 is a non-negative constant. There are two cases to consider depending on whether

∆0 > 0 or ∆0 = 0. These correspond to non-static and static near-horizon geometries

respectively.

2.4 Non-static near-horizon geometry

Consider first the non-static case ∆0 > 0. In this case, the constants ki cannot both vanish

for if they did then h would be closed and lemma 1 then gives ∆ = 0, contradicting ∆0 > 0.

Equation (2.23) determines B, which can be plugged into (2.19) to obtain

Z =
`

2

[

− 1

3∆
?2

(

Γ−1k
)′ − 1

3
Γ−1k +

Γ′

Γ
dρ

]

. (2.27)

Substituting the expression for B into (2.24) yields

ki(Γ−1ki)
′ =

3∆2
0Γ

′

Γ4
(2.28)

and, since ki are constants, this can be integrated to give

kiki = C2Γ − ∆2
0

Γ2
(2.29)
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where C is a positive constant. Now consider equation (2.8). The ρρ component gives

h · Z +
3

`
=

`

2

(

Γ′′

Γ
− Γ′2

2Γ2

)

. (2.30)

The ij component gives

`Γ′

4Γ
γ′

ij = −∆`Γ′

4Γ

√
γεij + γij (h · Z + 3/`) − Zi (h + (3/`)Z)j . (2.31)

Let’s deal first with the special case in which Γ is constant. These two equations reveal

that this implies h = −(3/`)Z (Zi cannot vanish when Γ′ = 0 since this would imply that Z

vanishes but Z has unit norm). All solutions with this property were obtained in [1]. There

are three possibilities: corresponding to the metric on H being a homogeneous metric on

the manifolds Nil, SL(2, R) or S3 respectively.

Now assume Γ is non-constant. Multiply (2.31) by γij to get

Γ′′

Γ
=

Γ′

2Γ
(log γ)′ . (2.32)

Since Γ′ is nonzero, we can divide by Γ′ and integrate to get

√
γ = β2|Γ′|, (2.33)

where β is a positive constant.

Multiplying (2.31) by kikj leads to an equation which can be rearranged to read

(k · Z)2 = C2Γ − ∆2
0

Γ2
− C2`2Γ′2

4Γ
. (2.34)

But from equation (2.30) we have

k · Z =
`

2
Γ′′ +

`Γ′2

4Γ
− 3Γ

`
=

1

`Γ

dy

dΓ
, (2.35)

where

y =
`2

4
ΓΓ′2 − Γ3. (2.36)

This implies that (2.34) can be rewritten as

(

dy

dΓ

)2

+ C2`2y = −∆2
0`

2, (2.37)

with solution

y = −C2`2

4
(Γ − α0)

2 − ∆2
0

C2
, (2.38)

where α0 is a constant of integration. Hence we have

Γ′2 =
4P (Γ)

`2Γ
, (2.39)

– 8 –
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where

P (Γ) = Γ3 − C2`2

4
(Γ − α0)

2 − ∆2
0

C2
. (2.40)

Note that P (Γ) ≥ 0 implies that k cannot vanish anywhere unless α3
0 = ∆2

0/C
2.

At this point, it is convenient to exploit the GL(2, R) symmetry to set k1 = 1, k2 = 0.

Equation (2.29) then gives

γ11 = C2Γ − ∆2
0

Γ2
. (2.41)

Plugging equation (2.39) into equation (2.35) and using the explicit form of Z (equa-

tion (2.27)) gives an ODE for γ12:

d

dΓ

(

γ12

γ11

)

=
∆0β

2

(C2Γ3 − ∆2
0)

2

(

2C2Γ3 − 3C2α0Γ
2 + ∆2

0

)

. (2.42)

This can be integrated to give

γ12 =
∆0β

2(α0 − Γ)

C2Γ3 − ∆2
0

γ11, (2.43)

plus a constant times γ11 which can be eliminated using the remaining GL(2, R) freedom

to shift x1 by a constant times x2. Finally we can get γ22 from (2.33), using the freedom

to rescale x2 to set β = 1. The 2-metric γij is now fully determined in terms of Γ, so it is

convenient to use Γ, instead of ρ as the 3rd coordinate on H. The full near-horizon solution

is

gabdxadxb =
`2ΓdΓ2

4P (Γ)
+

(

C2Γ − ∆2
0

Γ2

)(

dx1 +
∆0(α0 − Γ)

C2Γ3 − ∆2
0

dx2

)2

+
4ΓP (Γ)

`2(C2Γ3 − ∆2
0)

(dx2)2,

∆ =
∆0

Γ2
, k =

∂

∂x1
, h = Γ−1(k − dΓ), (2.44)

where

P (Γ) = Γ3 − C2`2

4
(Γ − α0)

2 − ∆2
0

C2
(2.45)

with C and ∆0 positive constants and α0 an arbitrary constant. It can be checked that

the remaining equations of section 2.2 are all satisfied.

To summarize, we have determined all non-static near-horizon solutions admitting two

commuting Killing fields. There are several cases:

I If Γ is constant then the near-horizon solution is one of the solutions given in section

3.2 of [1], for which H is locally isometric to a homogeneous SL(2, R), Nil or S3

manifold. The latter case arises as the near-horizon limit of the asymptotically AdS

black hole solutions constructed in [1].

II If Γ is non-constant then the near-horizon solution is (2.44).

– 9 –
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2.5 Static near-horizon geometry

We now turn to the static case. This is analyzed in appendix A, where it is proved that

the near-horizon solution must be one of the following:

III If Γ is constant then the near-horizon solution is the solution given in section 3.2

of [1] for which H is locally isometric to R × H2. This is the near-horizon limit of

the supersymmetric black “string” of [20].

IV A solution (A.18) that can be obtained by taking the limit ∆0 → 0 (with other

constants and the coordinates fixed) of the non-static solution (2.44). (This amounts

to simply setting ∆0 = 0 in the solution (2.44).)

V A solution (A.11) that can be obtained from (2.44) by setting ∆2
0 = C2Γ3

0, x1 = x̂2/C,

x2 = C`2x̂1/4Γ
3/2
0 and taking C → 0 with Γ0, α0, Γ and x̂i fixed.

VI The AdS5 solution obtained in section 3.2 of [1], for which H is locally isometric to

hyperbolic space.

The near-horizon geometry of the supersymmetric black holes of [3] is non-static with

non-constant Γ and hence must be described by (II) which we shall prove below. We shall

also see that solution (IV) describes the near-horizon geometry of a supersymmetric black

ring but suffers from a conical singularity.

2.6 Global considerations

So far, the discussion has been local. However, we are interested mainly in solutions for

which H is compact since this is true of any solution arising as the near-horizon limit of

a black hole. A compact 3-manifold admitting a U(1) × U(1) symmetry must be homeo-

morphic to T 3, S1 × S2, S3 or a lens space (see e.g. [21]). This excludes the solutions (I)

and (III) with constant Γ except for the solution of [1] with H locally isometry to S3. The

known black hole solutions with this near-horizon geometry [1] arise as a special case of

those of [3], and since we shall show that the near-horizon limit of the latter solutions is

described by (2.44), it follows that the S3 solution with constant Γ can be obtained as a

limit of (2.44), so we shall not consider this solution further.

The solution (VI) is excluded because H cannot be compactified without breaking the

rotational symmetries. So consider the other solutions with non-constant Γ. Note that γ11

is a scalar invariant: it is the norm of ∂/∂x1 (which is some linear combination of m1 and

m2). Furthermore, for all of the solutions with nonconstant Γ, γ11 is a monotonic function

of Γ when Γ > 0. This implies that Γ can be expressed uniquely in terms of the invariant

γ11 and is therefore globally defined.

If H is compact and Γ nonconstant then Γ must achieve a distinct minimum and max-

imum on H. Hence dΓ must vanish at two distinct (positive) values of Γ. By calculating

(dΓ)2, one finds that this is not possible for solution (V) above so this solution is neces-

sarily noncompact. This leaves solutions (II) and (IV). Hence any compact solution with

nonconstant Γ must be described by the line element (2.44), whether static (∆0 = 0) or

not (∆0 > 0).
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P (Γ)

0 Γ0 Γ1 Γ2 Γ

0

Figure 1: Sketch of P (Γ) corresponding to a compact H . Note P (Γ) > 0 for Γ0 < Γ < Γ1.

For this solution we have (dΓ)2 = 4P (Γ)/(`2Γ), so P (Γ) must be non-negative. Com-

pactness implies that P (Γ) must have two distinct positive roots Γ0, Γ1 with P (Γ) positive

for Γ0 < Γ < Γ1. It is not hard to see that this is only possible if P (Γ) has a third root

Γ2 > Γ1. (We can’t have Γ2 = Γ1 since this would make the proper distance to Γ = Γ1

infinite, i.e., H would not be compact.) So, for a compact horizon, P (Γ) must have the

form sketched in figure 1. This imposes restrictions on the parameters of the solution.

At first sight, it appears that (2.44) is a 3-parameter solution. However, it is not hard

to see that Γ is defined only up to multiplication by a positive constant. This freedom can

be used to eliminate one of the parameters. More explicitly, if K is a positive constant

then the (2.44) is invariant under the rescaling

Γ → KΓ, x1 → K−1x1, C2 → KC2, ∆0 → K2∆0, α0 → Kα0.

(2.46)

2.7 ∆0 = 0: unbalanced black ring

The metric of H is

gabdxadxb =
`2ΓdΓ2

4P (Γ)
+ C2Γ(dx1)2 +

P (Γ)

Γ2
(dx2)2, (2.47)

where we have rescaled x2. The metric has conical singularities at Γ = Γ0 and Γ = Γ1, where

∂/∂x2 vanishes. If one could remove these (by identifying x2 with a suitable period) then

one would be left with a smooth geometry of topology S1 × S2 with the S1 parameterized

by x1 and the S2 by Γ and x2. (Note that in this case we have mi ∝ ∂/∂xi.) Thus it would

describe the horizon of a supersymmetric black ring.

The necessary and sufficient condition for P (Γ) to have distinct real positive roots is

0 <
α0

C2`2
<

1

27
. (2.48)
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It is convenient to define a parameter b by

α0

C2`2
=

(1 − b2)2

(b2 + 3)3
, (2.49)

where 0 < b < 1. This defines b uniquely since the function on the r.h.s. decreases mono-

tonically from 1/27 at b = 0 to 0 at b = 1. We can now find explicit expressions for the

roots:

Γ0 =
α0(b

2 + 3)

4
, Γ1 =

α0(b
2 + 3)

(1 + b)2
, Γ2 =

α0(b
2 + 3)

(1 − b)2
. (2.50)

The coordinate x2 can be periodically identified to eliminate a conical singularity at Γ = Γ0.

The necessary and sufficient condition for the absence of a conical singularity of Γ = Γ1 is

then
(

Γ1

Γ0

)3/2

=
Γ2 − Γ1

Γ2 − Γ0
, (2.51)

which implies b = 1. This is not allowed since b < 1 and hence one can never eliminate

conical singularities from this metric.5 So, at best, this solution describes the near-horizon

geometry of an unbalanced supersymmetric black ring: the conical singularity provides the

force required to hold the ring in equilibrium.

Note that b → 1 as ` → ∞, which suggests that the conical singularities can be

eliminated as the cosmological constant is turned off. This is indeed true: in this limit, our

∆0 = 0 solution reduces to the AdS3 × S2 near-horizon geometry of the supersymmetric

black ring of [15].6

It is interesting to consider the five-dimensional near-horizon geometry, which, after a

coordinate change r = ΓR, is

ds2 = Γ
[

−C2R2dv2 + 2dvdR + C2
(

dx1 + Rdv
)2

]

+
`2ΓdΓ2

4P (Γ)
+

P (Γ)

Γ2
(dx2)2, (2.52)

it can be checked that the expression in the square brackets is the line element of AdS3.

Hence the five-dimensional near-horizon geometry is a warped product of AdS3 and a

deformed S2 with a conical singularity at one pole.

Our solution can be oxidized on S5 to give a solution of type IIB supergravity [22].

Viewing S5 as an S1 bundle over CP 2, the ten-dimensional solution is a warped product

of AdS3 with a 7-manifold M7, which is an S1 bundle over S2 × CP 2 where the S2 is our

singular S2. In fact, this ten-dimensional solution has been encountered before in a general

exploration of such warped products [17]. Furthermore, it has been shown that the solution

can be made into a globally regular metric if one takes M7 to have a different topology,

namely an S1 bundle over a 6-manifold B6, where B6 is an S2 fibration over CP 2 [17]. The

S1 and S2 here are not the same as for the uplift of our solution: if our Kaluza-Klein S1 is

5In fact this is obvious since the l.h.s. of (2.51) is greater than one and the r.h.s. is less than one.
6To see this explicitly, define a new coordinate θ by Γ = Γ0 cos2 θ+Γ1 sin2 θ, use equation (2.49) to write

` in terms of C, α0 and b and take the limit b → 1 with C, α0 and θ fixed and rescaling x2 as appropriate.

Note that Γ becomes constant in this limit.
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parameterized by a coordinate ψ (and the S2 by Γ and x2) then the regular solution has

S1 parameterized by x2 and S2 parameterized by Γ and ψ.

So although our near-horizon geometry is necessarily singular in five dimensions, it can

be made regular if lifted to ten dimensions. However, the resulting solution can no longer

be reduced to five dimensions so one loses any interpretation in terms of five-dimensional

black holes. It is natural to wonder whether the regular ten-dimensional solution might

describe the near-horizon geometry of a supersymmetric, asymptotically AdS5 × S5, black

hole with horizon topology S1 × M7.

2.8 ∆0 > 0: topologically spherical black hole

Write the metric on H as

gabdxadxb =
`2ΓdΓ2

4P (Γ)
+ A(Γ)

(

dx1 + ω(Γ)dx2
)2

+ B(Γ)(dx2)2. (2.53)

There are two cases to analyze depending on whether or not α0 coincides with Γ0 (note

that α0 cannot coincide with Γ1 since P ′(Γ1) < 0 and P ′(α0) > 0). If α0 6= Γ0 then

A(Γ) = (C2/Γ2)[P (Γ)+ (C2`2/4)(Γ−α0)
2] is positive for Γ0 ≤ Γ ≤ Γ1. We shall treat this

case here. The special case α0 = Γ0 is treated separately in appendix B. It turns out that

it can be obtained as a limit of the generic case with no further complications.

The range of Γ is Γ0 ≤ Γ ≤ Γ1. The 2-metric γij is non-degenerate within this range

but degenerates at the endpoints, where B(Γ) vanishes. This implies that the Killing field

ω(Γi)∂/∂x1 − ∂/∂x2 vanishes at Γ = Γi, i = 0, 1. Now, using the fact that Γi is a root of

P (Γ), we have

ω(Γi) =
4∆0

C4`2 (α0 − Γi)
, (2.54)

which implies that ω(Γ0) 6= ω(Γ1). Hence the Killing field that vanishes at Γ = Γ0 is

distinct from the one that vanishes at Γ = Γ1. In order to avoid conical singularities at

Γ = Γ0,Γ1 we must assume that these two Killing fields have closed orbits, in other words

they generate rotational symmetries. Hence our two rotational Killing fields mi must be

proportional to these two Killing fields:

m1 = −d1

(

ω(Γ0)
∂

∂x1
− ∂

∂x2

)

, m2 = −d2

(

ω(Γ1)
∂

∂x1
− ∂

∂x2

)

, (2.55)

for some non-zero constants d1, d2. Introducing adapted coordinates φi so that mi = ∂/∂φi

we have

x1 = − [ω(Γ0)d1φ1 + ω(Γ1)d2φ2] , x2 = d1φ1 + d2φ2. (2.56)

The condition φi ∼ φi + 2π fixes the constants di up to signs: in order to avoid conical

singularities one must take

|d1| =
`2(C2Γ3

0 − ∆2
0)

1

2

2P ′(Γ0)
, |d2| =

`2(C2Γ3
1 − ∆2

0)
1

2

2|P ′(Γ1)|
. (2.57)
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The solution is now globally regular. It is clear that H has S3 topology,7 with m1 vanishing

at Γ = Γ0 and m2 vanishing at Γ = Γ1. In appendix B it is shown that the coordinate

change from (x1, x2) to (φ1, φ2) is also valid for the special case α0 = Γ0 (although d1 → 0

as α0 → Γ0, the product d1ω(Γ0) remains nonzero in this limit). Hence we do not need to

treat this case separately any longer.

We shall now show that the near-horizon solution we have obtained is locally isometric

to that of the supersymmetric black hole solution of Chong et al. [3]. It is convenient to

use the roots Γi as parameters, as opposed to (C2, α0,∆0). These are related by

C2 =
4

`2
(Γ0 + Γ1 + Γ2) α0 =

Γ0Γ1 + Γ0Γ2 + Γ1Γ2

2(Γ0 + Γ1 + Γ2)

∆2
0 = C2Γ0Γ1Γ2 −

C4`2α2
0

4
. (2.58)

Note that Γi are not totally arbitrary positive numbers: they are constrained by ∆2
0 > 0.

Use the scale transformations (2.46) on Γ to fix

1

Γ0
+

1

Γ1
− 1

Γ2
= 2 (2.59)

which can always be done (i.e. the corresponding K > 0) since 0 < Γ0 < Γ1 < Γ2. We can

define two constants a, b so that the roots are parameterized as:

Γ0 =
1

1 + ag
Γ1 =

1

1 + bg
Γ2 =

1

g(a + b)
, (2.60)

where g ≡ 1/`. We need Γi to be positive and correctly ordered, which gives the restrictions

g−1 > a > |b|. (2.61)

Note that b may be negative. One can solve for C, α0 and ∆0 using (2.58). One finds that

∆2
0 =

4(ag + bg + abg2)

(1 + ag)2(1 + bg)2(a + b)2
, (2.62)

so the constraint coming from ∆2
0 > 0 is, in the notation of [3],

r2
0 ≡ g−1(a + b) + ab > 0. (2.63)

We now define a coordinate θ by

Γ =
gρ(θ)2

(a + b)(1 + ag)(1 + bg)
(2.64)

where

ρ(θ)2 =
a + b

g
+ ab + a2 cos2 θ + b2 sin2 θ. (2.65)

7More precisely, the covering space of H has S3 topology. H could actually be a lens space if additional

identifications are made.
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It is easy to check that taking 0 ≤ θ ≤ π/2 does indeed uniquely parameterize the range

Γ0 ≤ Γ ≤ Γ1 (although θ = 0 corresponds to Γ = Γ1 and θ = π/2 to Γ = Γ0). We then

have

cos2 θ =
Γ − Γ0

g2(a2 − b2)Γ0Γ1Γ2
, sin2 θ =

Γ1 − Γ

g2(a2 − b2)Γ0Γ1Γ2
, (2.66)

P (Γ) =
g(a − b)2

(1 + ag)3(1 + bg)3(a + b)
cos2 θ sin2 θ∆θ, (2.67)

where

∆θ ≡ 1 − a2g2 cos2 θ − b2g2 sin2 θ, (2.68)

and
`2ΓdΓ2

4P (Γ)
=

ρ(θ)2dθ2

∆θ
. (2.69)

For completeness, we give the expressions for the constants di:

d1 =
a + 2b + 2abg + gb2

g(1 − bg)(a − b)
, d2 = −b + 2a + 2abg + ga2

g(1 − ag)(a − b)
(2.70)

We have checked that our 3-metric in the (θ, φ1, φ2) coordinates agrees exactly with the

horizon metric of Chong et al. in their (θ, ψ, φ) coordinates8 with φ1 = ψ and φ2 = φ.

It is interesting to note that the near-horizon geometry is considerably simpler in the

coordinates (Γ, x1, x2) than in the coordinates (θ, φ1, φ2).

3. Discussion

In this paper we have determined the most general regular, supersymmetric, near-horizon

geometry of an asymptotically AdS5 black hole solution of minimal gauged supergravity

which admits two rotational isometries. We found that the only such solution is the near-

horizon geometry of the topologically spherical supersymmetric black hole discovered by

Chong et al. [3]. Hence if new supersymmetric black hole solutions exist then either they

do not have two rotational symmetries, or they have the same near-horizon geometry as

the known solutions.

Our result implies that exotic topologies for supersymmetric black holes (such as black

rings) are not allowed, unless they possess fewer than two rotational symmetries. We should

emphasise that no known black hole in five dimensions possesses fewer than two rotational

symmetries, including the asymptotically flat supersymmetric black rings of ungauged su-

pergravity [15]. It has been conjectured, however, that there could exist asymptotically

flat black holes with only one rotational symmetry [11], essentially because this is all one

is guaranteed in general [16].

Curiously we did find a near-horizon geometry which describes a black ring, however it

necessarily possesses a conical singularity. Physically this can be interpreted as suggesting

8Actually before taking the near horizon limit of their metric one needs to introduce coordinates which

are valid on the horizon. In particular the angles ψ and φ must be shifted by functions of r (see the analysis

in [5]) and it is these new angular variables which we are referring to.
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that supersymmetric black rings in AdS cannot be ”balanced”, i.e., rotation and elec-

tromagnetic repulsion is not enough to counterbalance gravitational attraction (which is

enhanced in AdS). However, known unbalanced ring solutions (e.g. [9, 10]) can be balanced

by increasing the angular momentum, so it seems likely the same will be true here (the

mass and/or charge would also have to change for consistency with the BPS inequality).

Hence our singular near-horizon geometry may be interpreted as evidence in favour of the

existence of regular non-supersymmetric anti-de Sitter black rings.

It is interesting to compare our result with the corresponding result for the ungauged

theory [11]. In the latter theory, one obtains a complete classification assuming only super-

symmetry and compactness of the horizon. The allowed near-horizon geometries all admit

two rotational symmetries (in fact H is homogeneous), but this is an output, not an input.

In the gauged theory, we had to input the rotational symmetries as an assumption. It

would be nice if this assumption could be relaxed and the general solution of the equations

of section 2.2 determined (for compact H).

In the ungauged theory it is possible to construct a global uniqueness argument for

supersymmetric black holes of spherical topology [11]. It is obviously desirable to have

a corresponding result for the gauged theory, i.e., prove that the solution of [3] is the

only supersymmetric asymptotically AdS black hole solution, even assuming two rotational

symmetries. However, the arguments of [11] rely heavily on features of the ungauged theory

that do not extend to the gauged theory so new ideas would be required to do this.

In the ungauged theory, it is straightforward to extend the argument to allow for

abelian vector multiplets [23] and the same is probably true in the gauged theory. So it

seems likely that any supersymmetric, asymptotically AdS black hole solution of gauged su-

pergravity coupled to abelian vector multiplets must have the same near-horizon geometry

as the solution of [5] if it admits two rotational symmetries.
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A. Static near-horizon geometry: ∆0 = 0

The analysis can be divided into three subcases.

(I) First, consider k ≡ 0 and B ≡ 0. Then h = −(2/`)Z. It was shown in section 3.2

of [1] that this implies that the solution is just AdS5 with vanishing Maxwell field.

H is locally isometric to hyperbolic space, and hence cannot be compactified without

breaking the rotational symmetries.

(II) Consider the case k ≡ 0 and B not identically zero. Equation (2.25) implies

?2B = Γ−1ω, (A.1)
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where ωi are constants (note ωi = 0 is covered by case (I) and thus we will assume

this is not the case here). We have

h = −Γ′

Γ
dρ, Z =

`

2

(

Γ−1ω +
Γ′

Γ
dρ

)

. (A.2)

The ρρ component of (2.8) gives

Γ′′

Γ
+

Γ′2

2Γ2
=

6

`2
, (A.3)

which implies that Γ′ is not identically zero hence we can change variable from ρ to

Γ and rewrite this equation as

d

dΓ

(

ΓΓ′2 − 4Γ3

`2

)

= 0, (A.4)

with solution

Γ′2 =
4

`2Γ
P (Γ), (A.5)

where

P (Γ) = Γ3 − Γ3
0, (A.6)

and for convenience the integration constant has been chosen such that Γ0 is the real

root of P (Γ). Using the fact that Z is a unit one-form one can deduce that:

ωiωi =
4Γ3

0

`2Γ
(A.7)

and thus Γ0 > 0. The ij component of (2.8) reduces to

`Γ′

4Γ
γij

′ =
1

`

(

1 +
2Γ3

0

Γ3

)

γij −
3`

4Γ2
ωiωj. (A.8)

We can use the GL(2, R) freedom to set ω1 = 1 and ω2 = 0, i.e. ω = dx1. Therefore

γ12 and γ22 satisfy the same first order ODE which can be written as:

d

dΓ
log γi2 =

P ′(Γ)

P (Γ)
− 2

Γ
. (A.9)

Thus γ12 and γ22 are both equal to some constant times P (Γ)/Γ2. This means that

we can use the remaining GL(2, R) freedom to set γ12 = 0 and γ22 = P (Γ)/Γ2.

Multiplying (A.8) by γij implies

d

dΓ
log γ =

P ′(Γ)

P (Γ)
− 1

Γ
(A.10)

where γ is the determinant of γij, and hence γ = C2P (Γ)/Γ where C is a positive

constant. These results imply γ11 = C2Γ. Note that ωiω
i = γ11 and thus upon com-

parison with (A.7) we deduce C2 = `2/4Γ3
0. The rest of the equations in section 2.2
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are satisfied without further constraint. Using Γ instead of ρ as a coordinate allows

one to write the metric on the horizon as:

gabdxadxb =
`2ΓdΓ2

4P (Γ)
+

`2

4Γ3
0

Γ(dx1)2 +
P (Γ)

Γ2
(dx2)2, (A.11)

This metric is smooth for Γ > Γ0 (recall necessarily we have Γ0 > 0). There is a

conical singularity at Γ = Γ0 but this can be removed by appropriately identifying

x2. The 3-manifold this defines is topologically R2 × S1. By rescaling x1 suitably

and letting Γ0 → 0 we recover case (I).

(III) Consider the case where k is not identically zero. Equation (2.23) implies that

Γ−1ki = const , and therefore one can again deduce from (2.25) that:

?2B = Γ−1ω (A.12)

where ωi are constants. Expanding ?2B in the basis {k, ?2k} and using (2.24) implies

ω = α0Γ
−1k (A.13)

for some constant α0. Therefore

Z =
`

2

[

(α0

Γ
− 1

)

Γ−1k +
Γ′

Γ
dρ

]

. (A.14)

Note that if Γ is a constant, h = αZ for some constant α. This case was considered in

section 3.2 of [1], where it was proved that H must be locally isometric to R×H2. In

the following we assume Γ is non-constant. From the fact that Z is a unit one-form

one can show that:

Γ′2 =
4P (Γ)

`2Γ
(A.15)

where

P (Γ) = Γ3 − C2`2

4
(Γ − α0)

2 (A.16)

and we have defined the constant C > 0 by C2 = Γ−1kik
i (since ki are constants by

assumption). Let us use the GL(2, R) freedom available to set k1 = 1 and k2 = 0.

Using the definition of the constant C then gives γ11 = C2Γ. Also, since Γ−1ki

is a constant we deduce that γ12 = cΓ for some constant c. Using the GL(2, R)

transformations (which leave ki invariant), we can arrange to have γ12 = 0. Then,

the 22 component of equation (2.8) simplies to:

d

dΓ
log γ22 =

P ′(Γ)

P (Γ)
− 2

Γ
(A.17)

which implies γ22 = P (Γ)Γ−2 (the integration constant have been fixed using the

remaining GL(2, R) freedom). Collecting these results gives the horizon geometry

gabdxadxb =
`2ΓdΓ2

4P (Γ)
+ C2Γ(dx1)2 +

P (Γ)

Γ2
(dx2)2 (A.18)

with P (Γ) given by (A.16). The rest of the equations in section 2.2 are now satisfied

without further constraint. This metric is analysed in section 2.7 of the main text.
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B. Special case α0 = Γ0

This special case needs to be considered separately. The metric on H still takes the

form (2.53). For Γ0 ≤ Γ ≤ Γ1 the function A(Γ) now vanishes for Γ = Γ0 and is positive

otherwise. The function B(Γ) now vanishes only at one end point Γ = Γ1 and is positive in

the rest of the interval. Therefore the 2-metric γij is non-degenerate for Γ0 < Γ < Γ1 and

degenerates at Γ = Γ0 and Γ = Γ1. The Killing field ∂/∂x1 vanishes at Γ = Γ0 and the

Killing field ω(Γ1)∂/∂x1−∂/∂x2 vanishes at Γ = Γ1. In order to avoid conical singularities

at Γ = Γ0,Γ1 these two Killing fields must have closed orbits. Thus these two Killing fields

must be proportional to mi, say

m1 = c1
∂

∂x1
, m2 = −d2

(

ω(Γ1)
∂

∂x1
− ∂

∂x2

)

. (B.1)

Now introduce adapted coordinates such that mi = ∂/∂φi:

x1 = c1φ1 − d2ω(Γ1)φ2, x2 = d2φ2. (B.2)

The condition φi ∼ φi + 2π implies that in order to avoid the conical singularities we must

take:

c2
1 =

`2

9C2Γ0
, d2

2 =
C4`6(Γ1 − Γ0)

2

16P ′(Γ1)2
. (B.3)

This solution is now globally regular and has S3 topology with m1 vanishing at Γ = Γ0

and m2 vanishing at Γ = Γ1. The coordinate change (x1, x2) → (φ1, φ2) can be obtained

from the α0 6= Γ0 case studied in section 2.8 by taking the limit α0 → Γ0.
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